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Relativistic theory of magnetoelastic interactions 
111. Isotropic media 
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Universite de Paris-VI, Departement de Mecanique Thkorique (ERA du CNRS). Tour 66. 
4 Place Jussieu, 75230 Paris, Cedex 05, France 

Received 30 March 1973, in final form 18 May 1973 

Abstract. In the third part of this work constitutive equations valid in isotropic media are 
obtained for both thermodynamically recoverable and dissipative processes. The reversible 
contributions are derived from the internal energy written in an ad hoc form corresponding 
to isotropy whereas the dissipative parts are derived from a convex dissipation potential. 
The former are nonlinear and describe elastic, magnetostrictive, magnetic anisotropy and 
exchange phenomena. The latter are quasi-linear ,and describe viscous stresses, heat and 
electricity conductions, and the damping of the magnetization precession. All classical 
known effects are included in the formulation at the nonrelativistic limit. 

1. Introduction 

The contents of this paper complement those of two foregoing papers (Maugin 1972a, 
1973a, to  be referred to  as I and I1 respectively) in which the field equations and general 
constitutive equations for recoverable thermodynamical phenomena were given for a 
relativistically invariant theory of magnetoelastic interactions. Magnetic spins and 
gyromagnetic phenomena are taken into account in a continuous way. In this paper 
the emphasis is placed upon the study of isotropic media. This is the simplest but certainly 
not the most realistic degree of symmetry we can envisage. In fact, since the theory 
mainly concerns the behaviour of ferromagnetic materials, cubic structure (for example) 
would certainly be more adequate. However, the hypothesis of isotropy-which 
therefore implies the underlying assumption that the material is polycrystalline-allows 
us to carry out the study in a manageable (tensorial) mathematical form, for (i) we know 
representation theorems (Smith 1970, Spencer 1971) from which we can construct 
isotropic expressions that depend on a series of tensorial arguments-this is useful 
for representing the nonlinear constitutive equations corresponding to  thermodynamic- 
ally recoverable phenomena (elasticity with large deformation field, strong magnetiza- 
tion); (ii) i t  is a case for which quasi-linear constitutive equations which correspond to 
dissipative processes (viscous stresses, heat conduction, electric conduction, relaxation 
of the magnetization) can be given sufficiently simple forms, the theory being already 
quite complicated by itself. 

A summary of the basic field equations obtained in I and basic notations are given 
in 5 2. In 5 3, constitutive equations that correspond to recoverable thermodynamical 
phenomena in isotropic solids are derived from the general constitutive equations 
obtained in 11. It is shown that these equations can be constructed from eleven invariants 
if the functional form of the internal energy density is known. Although complicated, 
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these equations offer a phenomenological representation, within the frame of an exact 
theory (ie, there are no approximations such as infinitesimal deformations, weak 
magnetization,. . .) of all expected effects such as elastic, magnetostrictive, magnetic 
anisotropy and exchange phenomena. The now classical Poynting and Kelvin effects 
of nonlinear elasticity (see Eringen 1962) are obviously included in the formulation, 
but they are not studied here. The linearization of the equations obtained is not per- 
formed, for it would be essentially similar to that made in the classical three-dimensional 
theory of micromagnetics (cf Maugin 1971c, 1972e, Maugin and Eringen 1972b). Section 
4 deals with constitutive equations for isotropic dissipative materials. At  this point, we 
follow the recent trend of continuum physics in considering a convex dissipation poten- 
tial (essentially an extension of the ideas contained in the expression of the classical 
Rayleigh potential) from which constitutive equations for dissipative phenomena are 
derived. According to the recent formulation of the author (Maugin 1973, preprint), 
this is possible even for nonlinear constitutive equations. However, in the present case, 
it is difficult to postulate the form of an adequate dissipation potential. Therefore, in 
order to simplify the analysis, only the case of quasi-linear constitutive equations is 
examined. The dissipation potential considered assumes a ‘natural’ form justified in 
appendix 1. The sign of the corresponding material ‘constants’ is obtained by requiring 
this potential to be non-negative. The resulting dissipative phenomena are : (a )  electrical 
conduction which corresponds to finite electrical conductivity ; (b )  a viscous (symmetric) 
stress which suggests that the theory could be applied to the study of liquid crystals in 
the nonrelativistic limit ; ( c )  a dissipative skewsymmetric stress proportional to the 
difference between the angular velocity of the magnetization and the local rate of rotation 
of the deformable matter which, when interpreted, leads to a relaxation of the magnetiza- 
tion, that is, a damping of the magnetization precession, in a way similar to that described 
in the classical theory of micromagnetics (cf Maugin 1972d) and, therefore, includes 
in the limit the expressions given by Gilbert and Kelley (1955) and Landau and Lifshitz 
(1935) ; ( d )  dissipative couple stresses which yield a supplementary relaxation of the 
magnetization corresponding to hypothetical dissipative processes associated with 
exchange forces ; heat conduction corresponding to a relativistic generalization of 
Fourier’s law. However the latter yields a parabolic equation of heat flow which is 
unacceptable from the relativistic viewpoint. The answer to this paradox is provided 
in other works concerned with relativistic thermodynamics (Maugin 1973b, c). In cases 
(c )  and ( d )  above, only the effect of the leading term is examined due to the complexity of 
the four-dimensional formulation. 

From time to time, the comparison is made with the classical three-dimensional 
theory formerly studied by the author (Maugin 1971c, 1972d, 1973s Maugin and 
Eringen 1972a, b). The equations established, especially those of 0 3, will prove useful in a 
forthcoming study of wavefront propagation. In appendix 2, it is shown that several 
forms of the relativistic spin precession equation obtained in 1-111 are equivalent. The 
basic notation for relativistic continuum mechanics is to be found in Grot and Eringen 
(1966), Maugin (1971a, b), Maugin and Eringen (1972~). 

2. Summary 

The field equations which govern a magnetized deformable. medium endowed with a 
continuous distribution of electronic spins and which are valid throughout a continuous 
region of the minkowskian space-time manifold M4 have been given in the first part of 
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the present work (Maugin 1972a). They are supplemented by thermodynamical equa- 
tions and inequalities of which special forms were given in part I1 (Maugin 1973a). The 
relevant field equations are the continuity equation (1-4.1)?, the first and second Cauchy's 
equations (equations (1-4.2) and (1-4.5)), the energy equation (1-4.8) or (11-2.23) and the 
local entropy inequality (11-2.25) also referred to as the Clausius-Duhem inequality. 
These are supplemented by Maxwell's equations (1-4.10) through (1-4.14) which we shall 
not recall here. Thus, throughout a region (9) of M4 in which all fields are continuous, 
the set of field equations is the following: 

(pu");, = p + p U a ; a  = 0, (2.1) 

(2.2) 
1 1 

way = PYatPa;p+Iq&Y + ~ E Y u p v ~ ~ j b U v + p ~ ~ 9 3 ~ ; Y +  O(c-Z), 
C 1c 

(2.3) 

w = p  1+---Aa93", ( c2 e c2 l - 1  

(2.7) 

(2.10) 

The short hand notation P{. . .} stands for the operation of projection on to a hyper- 
surface locally orothogonal to the worldline of a particle, for example, 

1 
C2 

PYp = 6;+-uQup, (2.1 1) P { P }  = l?pPPvspv, 

P:,, being the projection operator (cf I). The other symbols introduced in the equations 
given above bear the following significance$ : c : light velocity in vacuum; p : proper 
density of matter; U' : four velocity; ria : four acceleration; tPa : relativistic stress tensor 
(PU); MapY : relativistic couple stress tensor (PU); 8" : four electric field (PU); Ba : four 
magnetic induction (PU); j a  : four conduction current (PU); A@ : four magnetization per 
unit of proper mass (PU): Sap : magnetization bi-vector (dual of 2) (PU); y : gyromagnetic 
t Equations of part I and part I1 are referred to with a prefix I and I1 respectively. 
$ The abbreviation PU introduced in part I (for perpendicular to U') indicates that the quantities so labelled 
are essentially spatial. Their projections along the worldline direction vanish (ie, <heir purely time-like and 
their mixed space-time components vanish). For example, A,, is said to be completely PU if and only if 
A& = A , p B  = 0. 
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ratio; q : volumic electric charge: 0 : proper thermodynamical temperature; 6, : relativistic 
temperature gradient (PU); 4" : heat conduction four vector (PU); h : heat source per unit 
of proper mass; w : total energy per unit of proper volume; e :  specific internal magneto- 
energy (that is, e depends on .A@ and not on 99,); : specific entropy; $* : magneto-free 
energy per unit of proper mass; gap : relativistic rate of strain tensor (PU); w,, : relativistic 
rate of rotation or vorticity tensor (PU). atpar is the complicated kinematical PU quantity 
defined by equation (2.12). Finally R,, is the angular (PU) velocity of the magnetization 
2' so that the proper time evolution of & is given by? 

(2.12) 

The second term in the parentheses represents a Fermi-Walker transport of 
along the worldline of the 'particle' equipped with ~ f i .  In the right hand side of equation 
(2.2), we recognize the classical contributions : (a) the divergence of the mechanical 
stress tensor, (b) the Lorentz force, (c) the Stern-Gerlach force. The term O(C-') stands 
for terms which vanish at the nonrelativistic limit c -+ x (cf full formula in I). 

In the formulae above, semicolons denote covariant derivatives, a superposed dot 
indicates propertime differentiation, parentheses around a set of indices denote sym- 
metrization and brackets denote alternation. Indices enclosed between vertical bars are 
not antisymmetrized. is the permutation symbol of which the following algebra 
formulae will be useful : 

(2.13) € P v a r € P " a p  = 2(63;, - 6;6:), 

p Y P  cuprv = SiSLSt - SiSES: + SP,SiS: - SP,SLSt + SgSgSt - S3;SkSc. (2.14) 

It is also useful to notice that R,,, M u p y  and dDay satisfy the symmetry conditions : 

(2.15) 

The quantities appearing in equations (2.1) through (2.4) for which we need constitu- 
tive equations are tPu, M a P y ,  qp and j y .  The first and the second of these in general present 
recoverable and dissipative parts. The two last ones resort to purely dissipative pheno- 
mena, heat and electrical conductions. Thus we have 

tlra = R t P a  + D t P a ,  Map? = R M a P r + D M d y ,  (2.16) 

where the left superscripts R and D stand for recoverable and dissipative respectively. 
Constitutive equations for RtPu and RMaPy are obtained for nonlinear isotropic elastic 
materials in the following section. Possible constitutive equations for DtSa and D M u p y  in 
isotropic materials are derived in $4. 

3. Constitutive equations for isotropic non-dissipative solids 

We have established in part I1 (Maugin 1973a) that the recoverable parts RtPa and RMapy  
corresponding to  the behaviour of a hyperelastic medium were derivable from the 
Lorentz invariant potential 

v = * * ( c K L 5  M , ,  M, , ,  e, xK), (3.1) 

t To make easier the interpretation in the subsequent developments, we have made the change R,, + -RE, 
in equation (11-1.6), hence a similar alteration in the terms involving in equations (2.4), (2.5) and (2.10). 
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with 
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(3.2) 

I t  is clear after equation (3.2) that, instead of I)*, one may use the potential? 

e = z(CKL9 M L ,  MLK, v ,  X K )  (3.6) 

whose functional dependence is obtained from (3.1) via the Legendre transformation 
(3.2, part I). Then 

and the constitutive equations (11-3.41) and (11-3.42) take the forms 

(3.7) 

(3.8) 

(3.9) 

However, in view of further studies (in a forthcoming part IV devoted to the study ofwave 
propagation), it seems more convenient to use a different-but still equivalentf-set of 
constitutive arguments in equation (3.6) and to  write 

- 1  
e = i?(cKL, M L ,  M L K ,  q,  xK)  

in which C K L  is the reciprocal to C K L  (cf part I), that is, 

(3.10) 

- 1  

- 1  

CKLC,, = SE, K , L  , . . .  = 1,2,3. (3.1 1) 

Further we have defined 

- 1  - 1  - 1  
M L  = MKCKL,  M K L  = M M N C K M C L N .  (3.12) 

(3.13) 

t The functions defined by equations (3.1) and (3.6) obey the principle of material indifference in relativity 
enunciated in Maugin (1972b, c). 
t The new set of constitutive arguments forms a minimal function basis for Pas C,,, M ,  and M , ,  formed one 
for 8. In other words, the set of arguments that appear in Pis but an equivalent solution to the partial differential 
equation (11-3.6). 
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Noting that, if 9 denotes any differential operator, it follows from equation (3.1 1) that 

we can replace the set of equations (3.8H3.9) by 

3.1. Case of hemitropic homogeneous hyperelastic media 

This case is of particular interest since it corresponds to the simplest symmetry that one 
may consider. Furthermore it is the only one for which we know representation theorems 
(cf Smith 1970, Spencer 1971) that yield an explicit formulation of the nonlinear constitu- 
tive equations (3.14) and (3.15). To start with, we remark that the arguments of e' are 
scalars in M4. They however are tensorial quantities in the reference state ( B R )  c E: of 
the material body. The material symmetry is studied in this reference state, the three- 
dimensional euclidean space E: (a space-like section of M4 at a certain time) being 
equipped with the symmetric metric GAB which is used to raise and lower capital Latin 
indices. 

Homogeneity-which requires invariance under the group of translations { B ]  in E:-- 
implies that 

(3.16) 

Hemitropy implies invariance of e' under the proper orthogonal group (S} in E: .  A 
theorem due to Smith (1970), applied in Maugin and Eringen (1972b), then states that if N 
is the number of independent components of the tensorial arguments of Z, the minimal 
function basis for e' is built up of N-p members, with p = n(n - 1)/2 where n is the dimen- 
sionality of space. For hyperelastic media, we need not worry about the uniqueness of 
those members (cf Maugin 1971~). In the present case?, on account of (3.16), 

- 1  
e = e'(cKL, M L ,  MLK) .  

There are apparently eighteen independent tensorial components (eKL : 6, M L  : 3, MLK :9), 
but the saturation of the magnetization that we assume in the present study implies that 

= constant, = 0 (3.17) 

which represent four constraints (the second of equation (3.17) is not independent of the 
first, for, multiplied by up, it yields the proper time derivative of the first). In terms of the 
arguments of e', equations (3.17) can be restated as 

- 1  - 1  MLcLNMN = constant, M,cABfi,N = 0. (3.18) 

t We omit the dependence upon q. for i t  is only used to define the thermodynamical temperature (cf equation 
(3.7)). 
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Those constraints amount to  four. Hence we have N = 18 -4 and 

3(3 - 1) N-p = 14-- - - 11. 
2 

The eleven members of the minimal function basis of e", for hemitropic materials, can be 
chosen among the members of the integrity basis listed in Spencer (1971). f i L  is axial, 
hence we introduce its dual C A B  in E;  

- 1  
Note also that, since Z is skewsymmetric and C is symmetric (Tr = trace) 

- 1  - 1  

T r Z  = T r C : Z  = Tr(C)2:Z = 0. (3.20) 

Moreover the trace ofZ3 is not independent ofTr Z2 after the Cayley-Hamilton theorem. 
Then selecting the following list of invariants : 

I,,, = 4 Tr Z2 :(q2 

(3.21) 

(3.22) 

- 1  
= 9 Tr Z2, 

I,,, = Tr(fi:), 

I,,, = 3 Tr(fifZfif@$), 

I(,,, = Tr(CftCf-,fi;) 

I,,, = TrZ2:C,  

I , , ,  = f Tr(fifZfifp), 
- 1  

I ( , , )  = Tr(C:fifp), 
-1  - 1  

and writing 

we get from equations (3.22), (3.21), (3.14) and (3.15) 

(3.23) 

(3.24) 

in which the 
spatial PU measures of deformations: 

are scalar functions of the invariants I ( B , .  If one defines the following 

(3.25) 

of which the former is the relativistic Cauchy strain tensor (cf Maugin 1971a), then, upon 
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Furthermore, if there is no magnetization, then after use of the Cayley-Hamilton theorem 
in order to  express c3  as a function of c, c2 and P Z p ,  the first three terms in the first brackets 
of equation (3.26) yield the Murnaghan form for the constitutive stress equation of 
purely nonlinear elastic solids (cf equation (3.32) in Grot and Eringen 1966). 

It is of interest to  note the different effects represented in equations (3.26) and (3.27). 
In order to do this, i t  is not necessary to linearize these constitutive equations by con- 
sidering an expansion of the energy function (3.10) as a function of its arguments (as it 
was done in the simpler non-Lorentz invariant theory by Maugin and Eringin 1972b). 
We only have to examine the list of invariants (3.21) to judge the prominent influence 
of the terms in factor of each in equation (3.26). The invariants that contain only 

C will lead to the now classical (nonlinear) elastic effects. These are the invariants 
I ( 1 ) ,  Z(2)  and Io,. That which involves only M L  (or E), that is, I(4), yields the - fffect of 
magnetic anisotropy. Those which involve both &IL and the deformation tensor CKL, that 
is, I,,, and I o , ,  will yield a prominent magnetoelastic effect known as magnetostriction. 
Finally, those that contain M L N ,  that is, I ( , )  through I ( , , , ,  describe the effect of Heisen- 
berg's exchangeforces which represent the interaction between neighbouring electronic 
spins. We thus have a physical significance given to each term in the factor of each 
a(B) (one a(p) corresponding to the same numbered I(P)). However most effects are here 
mixed up in an intricate way because of the nonlinearity. For a linear theory, one would 
consider the limited expansion 

- 1  

in which the constant coefficients L K L M N ,  B,,, ;.KLMN and A K L M N  satisfy obvious sym- 
metry relations. The different contributions are here easily recognized as being the 
elastic energy, the magnetic anisotropy energy, the magnetoelastic energy and the exchange 
energy respectively. For isotropy, the coefficients introduced assume their isotropic 
values( combinations of Kronecker symbols dKL) .  For such developments, we refer the 
reader to the classical theory of micromagnetism such as developed by Maugin and 
Eringen (1972b, see also Maugin 1972e). 

Finally, as is clearly seen from equation (3.27) R M y P p  results mainly from the action of 
exchange forces ; in the linear theory constructed with the energy (3.28) it would depend 
only on these forces. 
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4. Constitutive equations for isotropic dissipative solids 

4.1. Preliminaries 

Once constitutive equations have been derived for RtPa and RMaPy according to equations 
(3.8H3.9) or (3.14)-(3.15), the Clausius-Duhem inequality (2.5) reduces to the dissipation 
inequality (cf equations (11-3.31) and (11-3.38)): 

1 .  
Q, = &,j?-- -doe ,  + Dt(Px)Gap  + ~ t [ p a l ( w , ~  - Q ~ ~ )  + D M ~ ~ w ~ ~ ~  2 0. (4.1) 

l e  

We define the relative angular velocity tensor of the magnetization by 

”,/? E w,p - Q,, rzp = - \ ‘on, vmpu* = 0. (4.2) 

Since DMpzy and dnsy are skewsymmetric in their two first indices (cfequations (2.15)), we 
can introduce their duals in M4 in a unique way. That is, 

(4.3) 

* .  
(4.4) 

* .  1 . I -  

d ( . , u ,  = d A u ‘  = 0. ~ P Z Y ~ U ,  ‘ 7  
d” 3 - E A P E u  ‘’ 2ic 

Reciprocally, 

(4.5) 
1 1 
ic 

DMPaY = - - E ~ a ~ a f i ~ 7 U  dPz7 = 5 P a p u J ! , u ~ .  1c P 0 ’  

Then using equations (4.5) and (2.13), we transform the last term in 0, and taking account 
of equation (4.2), we write the dissipation density Q, as 

1 .  * *  
Q, = &j?- -@e, + Dt(Pa)aZP + D t [ ~ a l l ~ p  - ~ M P Y ~ ~ ,  . (4.6) ‘ e  

The present problem consists in constfucting constitutive equations for f’, Lip, D t ( P a ) ,  
D t [Pa l  and $PY. One may assume that &,, e,, oaP,  v z P  and are the thermodynamical 
affinities to which are associated the corresponding generalized fluxes j y ,  -@/e, Dt(Pa) ,  
Dt[Pal and -2M’Y. We shall denote by (p) = 1,2, .  . . ,24, the indexed series of 
independent components of the generalized affinities? and by ,qp,, (p)  = 1,2, .  . . ,24, the 
indexed series of independent components of the generalized fluxes (or irreversible forces 
in the language of Ziegler 1963). From these considerations, linear constitutive equations 
could be immediately constructed for dissipative phenomena by means of Onsager’s 
theory. However a recent trend in continuum physics has been to  generalize the concept 
of potential to nonlinear dissipative phenomena (this potential being subject to the 
convexity condition provided by inequality (4. l)), thus allowing a degree of generality 
similar t o  that provided by the potential I)* or e for recoverable phenomena. Among the 
most notable attempts toward this direction is that of Ziegler (1963) to  which Moreau 
(1970) has brought more mathematical rigour (cf Germain 1973). We have already used 

t All tensor fields that appear in Q, are PU. Thus, although they are expressed in covariant four-dimensional 
formalism, they have exactly the same number of independent components as the corresponding three- 
dimensional entities, for example, each of &?, 8, and va8 has three independent components, cap has six. and 

has nine. The same is true of the corresponding fluxes. 
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this method for the treatment of dissipative phenomena in the classical theory of micro- 
magnetics (Maugin 1972d). Here we shall recall without derivation the more modern 
approach envisaged by the author (Maugin 1973 preprint). 

after the axiom of equipresence (Eringen 
1962, chap 5) .  Next, the x ( ~ ,  may also depend on the arguments which appeared in I)* or e, 
that is, the arguments used to  define the recoverable phenomena. Let A denote the set of 
these arguments. Hence 

First, in general all x ( ~ ,  depend on all 

with, symbolically (cf equation (4.1)), 

(4.8) 

Now, ifthe x ( ~ ,  are assumed to  be functions of class C' with respect to the arguments &,, 
the inequality (4.8) clearly implies for a given (p)  that 

(4.9) 

The general formulation proposed by the author (Maugia 1973 preprint) goes a: follows. 
Define the total dissipation or entropy production P,(B) in an open region (B)  of M4, 
that is, 

I(p,(A, a ( y ) + ( p ) ?  a ( p )  = 0) = 0. 

(4.10) 

We then have the extremum theorem? : 
for all 

A fixed and which possesses partial Frechet derivatives with respect to a,p, that vanish for 
a,p, = 0, that is, if F is stationary at 

pq(g) = 6 T F [ A ,  a ( p ) ] 3  A fixed (4.1 1 )  

where 6,F indicates the total Frechet derivative of 5 the second principle of thermodyn- 
amics is automatically satisfied in global form (for W), for 

P,(& > 0 with Pq(&)laip)=O = 0. (4.12) 

If there exists a continuous functional F[A, a,p!] convex with respect to  the 

= 0, then setting 

Further we have the following representation and lower and upper bounds 

(4.13) 

in which Bicp)F indicates the partial Frtchet derivative with respect to a(p, and V i [ p ) 9  is 
the partial gradient of F with respect to  

Clearly the x ( p ,  are derivable from the potential 5 The particular case of interest is 
the following. Let @A,  &(a,) be a convex function with respect to  &,p, for all A ,  at least of 
class Cz with respect to the and such that ./ ad, = o .  

a%O i i p ) = o  

t A ,  and Y have values in well-defined vectorial spaces of functions that we do not specify here. The 
symbolism Y [ A ,  E :  c] means that 9 is a general functional of A and B and a continuous linear functional of 
C. Compare Rall (1971) for elements of nonlinear functional analysis. 
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Then the functional 

9 [ A ,  4 p ) I  = i&) @ A ,  a(p,)  d4u 

verifies the hypotheses of the extremum theorem enunciated above, and 

(4.14) 

Further, 6 being assumed of class C2, we get from equation (4.14) the reciprocity relations 

(4.15) 

If 6 is homogeneous of degree two in &,, then 

and the relations (4.15) degenerate into the classical Onsager reciprocity relations. 

dissipation potential 0. 
Hence the x(P ,  =_(jy, -@/e, ? ( / l a ) ,  Dt[Bal, - 2 f i P y )  in general are derivable from a 

4.2. Approximate constitutive equations 

The degree of generality obtained from the preceding formulation is pretty large but it 
also leads to  complex expressions, for we should consider, for isotropic media, a represen- 
tation of the dissipation potential 

in which 

(4.17) 

as an isotropic function of its PU arguments. This is in general possible but we should get 
extremely complicated expressions as one can already judge from the lengthy un- 
manageable expressions given, for instance, by Grot and Eringen (1966) and Eringen 
(1970) when the number of arguments is less than in the present case. Since the present 
theory is already much complicated by itself and we desire to put in evidence the leading 
effects, we shall content ourselves with the following ‘natural’ (cf appendix 1) dissipation 
potential 

6 = - A(Tr a)’+ 2 p  Tr a’ + 5 Tr v2 +ob2 + %?’ 

(4.18) 

in which the scalar coefficients ;1, p, 5; 0, x, 11, i and 5 are considered to be scalar valued 
functions of A = ( p ,  8, .A?: 

1 2 e 
- { v(Tr d)2 + i T r ( d d T )  4 ( Tr d’} 

Li 
&Jl). Here we have set (T = transposed) 

I .  

Tr a2 = oaPop,, Trv’ 3 \tapirpl,  b2 3 ayay, 6 2  PPe,e,, 

T r ( d d T )  3 dPYdPr, T r d ’  E d P Y d  Y P ’  (4.19) 
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The potential $defined by (4.18) verifies the stationary hypothesis. I t  is homogeneous 
of degree two in its arguments a(p ) .  Clearly it is valid for isotropic media (cf appendix 1). 
I t  satisfies the convexity hypothesis if and only if the quadratic form (4.18) so defined is 
positive definite. This imposes some restrictions on the values of the scalar coefficients 
introduced. The necessary and sufficient conditio;s are es!ablish,ed as follows. We 
introduce the symmetric and skewsymmetric parts d(., and d[.] o f d  and the deviatoric 
parts d b  and d.oi of 0 and 4.) by 

4,?) = I(J,,+Jy,), 
d g a p  = gap  - 8 T r  b)pup > 

J&yI = gJpy -JJ 
(4.20) 

dJPY 3 J(,,) - o r  J)PPY. 

Note that Tr P = Fa = 3 (cf part I) so that 

Tr a?:) = Tr dd2 +i(Tr  (4.21) 

A similar formula holds for b and db.  Carrying (4.20) and (4.21) into equation (4.18), we 
obtain 

- (i(3v + i + 5 )  (Tr .di)2 + (i - 5 )  Tr(d . l ed t l )  + (i + <)(Tr d2)}. (4.22) 

Then for 6 to be non-negative, it is suficient that 

31+2p 2 0, P 2 0, g 2 0, x 2 0, 5 2 0, 

3v+i+5  6 0, r+i < 0 < r-i. (4.23) 

Using a method similar to that used by Eringen (1968, p 694)t, one may prove that the 
conditions (4.23) are also necessary. 

It is now straightforward to  give the constitutive equations that correspond to the 
dissipation potential (4.22). Applying equation (4.14), we immediately get 

D t ( B u )  = ~ ( p ,  e, J T : ) g ? y ~ p a  + 2,4p, e, JT:)aaP, 

Dt[pal = 5(p, e, J:)L? 

j y  = ~ ( p ,  e, J : ) ~ Y ,  
4fl = - x(p, e, J:)ppa8,,  

(4.24) 

(4.25) 

(4.26) 

(4.27) 

MPY = l ip ,  e, J:@P~P~Y + a(p, e, J : Q ( , y ) +  b(p, e, J : @ [ a y l  (4.28) 

where a 
obtain 

i + 4 and b = i - r .  Finally, from equations (4.28), (4.5), (4.4) and (2.14), we 

(4.29) ~ D M P ~ Y  = v ~ [ a P r l  + 2 j p h  + ~ L Q P Y  

in which we have defined the PU quantities 

t Equation (4.22) and equation (21.4) of Eringen (1968)-who deals with micropolar elasticity-have formally 
the same structure, we thus refer the reader to Eringen for the proof. 
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1 
C 2  

L@Y e -@wcwt& 
W P  0 t ’  

of which the former is obviously completely antisymmetric. 
Equations (4.24) through (4.27) and equation (4.29) form a set of possible constitutive 

equations for dissipative phenomena in isotropic media with electronic spins. A possible 
interpretation of these different phenomena is discussed in the next section. 

4.3. Interpretation of some dissipative phenomena 

4.3. I .  Electrical conduction. Clearly the scalar o represents the electrical conductivity 
and equation (4.26) is the four-dimensional version of Ohm’s law. For infinite electrical 
conductivity, we should take 87 = 0. That is, neglecting the relativistic effects and using 
the classical three-dimensional notation for the electric, magnetic induction, and velo- 
city fields (cf Maugin 1972f), 

v . E = O .  
1 

E + - u x B = O ,  
C 

(4.30) 

The first of these is classical Ohm’s law of perfect magnetohydrodynamics. The second 
of equations (4.30) asserts that the Joule term vanishes for pure electric convection. 

4.3.2. Viscous stresses. Equations (4.24) represent constitutive equations for relativistic 
newtonian compressible fluids (cf Maugin 1971b). The coefficients i, and p are scalar 
viscosities. Together with the constitutive equations (3.26) which can be linearized with 
an energy density given by equation (3.28) in a manner similar to that used in the classical 
theory (cf Maugin and Eringen 1972b), equations (4.24) provide constitutive equations 
for a material of the viscoelastic type. This dual mechanical behaviour coupled with the 
magnetic properties described in the present theory-rotation of the magnetization 
field, interactions between magnetization field and matter, interactions between spins- 
provides an interesting possibility, namely the phenomenological description of what 
occurs in liquid crystals. These peculiar media present either a liquid or an elastic 
behaviour according to  the circumstances. Moreover, placed in a magnefic field, they 
exhibit several magnetic effects (orientation ofthe spins). I t  is believed that their magnetic 
properties should be accurately described by the equation of evolution of the magnetiza- 
tion obtained here. I t  is known (cf Lee and Eringen 1971) that the stress tensor is not 
symmetric in such media because of the existence of spin, applied couples and couple 
stresses. One of course does not need a relativistic theory, but the three-dimensional 
expressions valid in the limit c -, CO can easily be deduced from the present formulation 
by applying the method outlined in Maugin and Eringen (1972~). Also, i t  is to be re- 
marked that liquid crystals exhibit a strong asymmetry in their mechanical properties. 
They are mainly transversely isotropic, that is, they are endowed with preferred directions. 
The degree of symmetry considered in the present work-isotropy-is then too large. 
However, at  least in a linear theory based on an energy density (3.28), it is possible to 
develop constitutive equations for transverse isotropy. The possibility pointed out here 
remains to be tested. At present this is outside the scope of this paper. 

Finally, while we know of only two mechanical behaviours which correspond to 
recoverable thermodynamical phenomena-pure elasticity and perfect fluidity-the 
class of constitutive assumptions for dissipative mechanical phenomena is much larger. 
Equations (4.24) offer but a very simple possibility. In relativistic continuum mechanics, 
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more complicated ones have been envisaged elsewhere, for example, Kelvin-Voigt 
viscoelastic materials in Maugin (1973d, e). 

4.3.3. Interpretation of Dt[Bal. The 'dissipative' constitutive equations (4.25) are the more 
interesting ones among those given in 8 4.2, for they yield effects peculiar to the theory. 
First it is to be noticed that Dt[Bul is-in isotropic materials-proportional to the relative 
angular velocity (cf equation (4.2)) that vanishes whenever the magnetization locally 
rotates, in an inertial frame, at  the same rate as does the deformable matter, that is, 
when the magnetization is frozen in the material. If it is so -vsa = &the only conse- 
quence is that Dt[Pal = O t .  Furthermore, if "I&"' = 0 or, equivalently, DMBay = 0, then it is 
known that equation (2.3) can be transformed into other equivalent forms which repre- 
sent a precessional motion of the magnetization. The result established in part I1 (see 
also appendix 2 hereafter) is that, in an inertial frame, the magnetization precesses at a 
uniform angular oelocity proportional to an effective magnetic induction. The situation is 
somewhat similar to that of a top which, when acted upon by gravity, precesses at a 
uniform angular velocity in the absence of friction with air. Then we can infer that if vPa 
differs from zero, hence Dt[Pal # 0, the precessional motion of the magnetization will vary 
in time as a consequence of dissipative effects due to internal friction between the rotating 
magnetization and the deformable medium. If the medium were rigid, then vpu would 
reduce to  RaB and the effect would remain essentially unchanged. We shall put this 
leading effect in evidence by transforming equation (2.3). In order to do this, we need 
certain expressions for the angular velocity O"@. 

We start with equation (A.4) in which n, is defined by the second of (A.7). Multiplying 
both sides by (l/ic)PAypxAup and using equations (2.14) and U%, +cz  = 0, we obtain 

or equivalently for the relativistic dual R,, of nY, 

(4.31) 

(4.32) 

hence the explicit form of equation (4.25). Now consider equation (2.3). It was shown in 
part I1 that, if DttBul and DMuPy vanish, then this equation takes the form of equation (AS) 
(appendix 2), that is, on account of equation (A.ll), 

P ( F }  = P(2Tc["x@'), ?La -y.(?#;ff. (4.33) 

The first of these equations is essentially spatial. It reduces to the classical three-dimen- 
sional equation fi = L x p (p is the magnetization three-dimensional vector per unit of 
mass) in which the three-dimensional angular velocity L varies from place to place in a 
magnetized medium, but is a constant in time at a certain spatial location. We assume 
that = 0, that is, DMBuy = 0, but Dt[uP1 # 0. Then after equation (2.3), we must add 
the quantity (2y/p)Dt[a@1 to the right hand side of equation (4.33, part two). On account 
of the constitutive equation for Dt[aB1, we obtain 

t In fact this is also true in anisotropic materials after the continuity condition (4.9). 
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in which we have set 

(4.35) 

and is the effective magnetic induction defined in part I1 for recoverable pheno- 
mena. The last contribution within brackets in the expression (4.34) is due to the vorticity 
ozp. I t  vanishes whenever the medium considered is a rigid motionless solid or the 
matter motion is irrotational. With equation (4.34), it is no longer possible to define 
a time constant precession velocity for, even if we define 

(4.36) 

and discard the two last terms in the right hand side of equation (4.34), the angular 
velocity so defined will vary in time and the nonrelativistic three-dimensional limit of 
equation (2.3) will be 

p = i t x p  = nxp--pxp.  (4.37) 
Ikl 

This shows that the scalar U acts as a damping constant whose presence leads to a spiralling 
of the magnetization field. This was only forecast in part I1 for the relativistic case. 
However formulae have been obtained previously by the author (Maugin 1972d) for the 
classical three-dimensional theory of micromagnetics. The occurrence of the coefficient U 
materializes internal friction, a phenomenon which bears a statistical mechanics support. 
Thus equation (4.34) generalizes the equations of Maugin (1972d) to relativistic formalism 
with the associated relativistic effects. By way of consequence, the equations of Gilbert 
and Kelly (1955) and Landau and Lifshitz (1935) which are approximations (when the 
deformation is neglected in both cases and, further, with small damping in the second 
case) are included in the formulation given here. 

In conclusion of this section, the existence of a 'dissipative' skewsymmetric part of 
the stress tensor physically means that the precessional motion of the magnetization is 
damped or, in other words, that the magnetic spins suffer a relaxation process. The 
value of the damping constant can be either determined by way of experiments, or 
evaluated from a statistical mechanics approach. 

4.3.4. Znterpretation of DMPay, It is difficult to figure out the effect resulting from the 
existence of the dissipative couple stress DMPar upon the precession of the magnetization 
-as one can judge from the relative complexity of the (notwithstanding simple since 
linear) constitutive equation (4.29). Nevertheless, it can be said that, since the correspond- 
ing recoverable part RMBay takes care of the classical exchange phenomena between 
neighbouring spins, DMBay might take care of some associated internal friction pheno- 
mena, if any. In fact, we do not know of any approach in which the latter are described 
or accounted for but in the three-dimensional continuum theory given earlier by the 
author (Maugin 1972d). Therefore we do not go in the details of the analysis of the effect 
of the hypothetical existence of DMBay. Simply, we indicate the effect of the leading term. 
The terms involving the material 'constants' ( and v in equation (4.29) are at least of the 
order of c-'. The predominant term in the expression (2.10) of dPay is that involving 
RBa;y. Hence we can consider DMBay = ~PpPB'PYARp, , , .  Then it is shown, on account 
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of equation (4.32), that the principal part of DMPav;y  is given by 

(4.38) 

in which we have introduced, for reason of dimensionality, a characteristic length L, for 
instance, a typical lattice constant, and set 

fi is the invariant differential operator introduced below (equation (4.44)). Then, adding 
the term (4.38) to equation (4.34), we should get instead of equation (4.36) : 

(4.39) 

which shows the supplementary alteration brought to the precession velocity. The term 
added is a relativistic generalization of the term introduced in the classical theory in 
order to take account of a similar dissipative phenomenon (cf equation (4.60) in Maugin 
1972d). 

ita 2: - "u'9?):,ff + I A461 - y , J a  + 6L2 cj ?/&a)} 

4.3.5. Heat conduction. From equations (2.4) and (4.27), it is possible to derive a relativis- 
tic equation of heat conduction. On account of the definition of 0 (equation (4.1)), of the 
decomposition (2.16) and equation (3.2, part one), equation (2.4) yields the following heat 
propagation equation valid for any constitutive equation for 4,: 

1 
6 perj+V,$fl--qpb,e-@+ph = 0 (4.40) 

in which we have defined the projected operator of covariant differentiation ba by 

(4.41) 

The expression (4.40) can be written in a more common form if we assume a constitu- 
tive equation of the form (4.27) for 4, and we specify $*, for q is derived from $* according 
to equation (3.2, part one). With $* given by (3.1) and assumed to be at least of class C 2  
in its arguments, it is possible to compute rj. Lengthy computations similar to thosemade 
in part I1 lead to the equation 

1 
c2 

bP = PTV, = vp+-u  uava. 

pc,B + V,BP + p h  = + P ( e a p  - Q ~ ~ )  + (4.42) 

in which we defined 
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We now assume that the material is isotropic. The values of the corresponding expres- 
sions of 28" and WpP can be evaluated with a function dependence of I)* based on the 
invariants listed in (3.21). We shall not make these computations. The dissipation 
potential considered is given by equation (4.27). We also suppose that xis a mere constant 
if the changes in temperature and density are not too large. Then 

(4.43) 

But it is possible to show that 

v@,e = [ j2e+o(c-2) ,  b' = P"PV,V, = V V , ,  (4.44) 

where the term O(c-') contains proper time derivatives of 8 of the first order only. The 
operator fi ' is essentially spatial for Pup is the metric of the three-dimensional hyper- 
surface (cf part I) expressed in four-dimensional notation. Further the quantity 

(0 + (i/e)pt,e) 
does not depend on the gradient of 6 except through terms of the order of c - ~ .  Thus 
equation (4.42) can be written as 

(4.45) 

If we take the nonrelativistic limit, for c H CO, of this equation for a rigid nonmagnetized 
solid in absence of volumic heat source, then defining the thermal diffusibility by 
p = x/pC,,, equation (4.42) reduces to the classical Fourier equation 

(4.46) 

Equations (4.27) and (4.45) have been established here according to  a logical scheme. 
Furthermore they reduce to  well accepted results in the nonrelativistic limit. Neverthe- 
less they are not entirely satisfactory from the relativistic viewpoint. Indeed it is known 
that the classical equation (4.46) represents a propagation of heat at infinite velocity. 
Heat perturbations propagate instantaneously. The same comments apply to the 
relativistic equation (4.45) for fi *, being essentially spatial, this equation contains no 
proper time derivatives of the temperature of an order higher than one. Then this equa- 
tion is parabolic in 8. The associated propagation velocity is thus infinite. This is in 
direct contradiction with the bound imposed upon. the propagation velocity of all 
physical phenomena in relativity. The assumption represented by equation (4.27) is 
therefore too naive. This fact was already remarked by several authors (eg Kranys 1966, 
Mahjoub 1971). The answer to this apparent paradox calls for the consideration of 
functional (and not function in the usual sense) constitutive equations for the relativistic 
heat flux four vector, equations that yield a relaxation process for the heat flux. For such 
attempts, we refer the reader to recent works of the author (Maugin 1973b, c). 

Appendix 1 

We consider quasi-linear dissipative constitutive equations. That is, the form of 0 given 
by equation (4.6) suggests we take the following 'natural' set of constitutive equations for 
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dissipative phenomena : 

Dt(Pa) = LPw C P V  9 D t [ P ~ l  = yPw v P V ,  j y  = 

48 = x P " r ) , ,  M P Y  = p Y * a d  l a  9 (A.1) 

in which the tensorial coefficients LPzPv, ~ P a P v ,  PYA, xB", and 9lrvAa depend on p, 8, .,&: and 
the motion. We remark that all affinities &,P ,  and all fluxes x ( ~ ,  are PU. It follows that the 
tensorial coefficients introduced are also PU, hence their isotropic values are expressed 
by means of the 'metric' Po, that is, on account of the symmetries, 

in which A, p, a, B, 4, n, X, v, ( and 5 are scalars which now depend only on @, 0, 4). 
Noting that vPv is skewsymmetric and .dla is a general second orfler tensor for which one 
introduces the symmetric and skewsymmetric parts d(j,a) and dLj,,,l (cf equations (4.20)), 
one gets from equations (A.l)  

Dt(P") = Aa?yPP" + 2pnP", 

Dt[Bal = 5@", 48  = -xPP"B,, j y  = abY ,  (A.3) 
M P Y  = vpPYde + & ( P Y )  + bd[PY], 

* a  

where 

5 = B-b, a =  i + 5 ,  b E ( - 5 .  

Carrying equations (A.3) in equation (4.6), we obtain a function homogeneous of degree 
two in the affinities a(P). Hence, after the equation which follows (4.15), the dissipation 
potential 

(5 = 9 = 1 x ( ~ ) ~ ( p )  
( B )  

whose explicit form is given by equation (4.18). 

Appendix 2 

In part I1 (Maugin 1973a) and a preceding work (Maugin and Eringen 1972c) we have 
obtained several forms for the dynamical equation which governs the magnetic spin (in 
the nondissipative case). These are equations (11-1.9), (11-5.8) and equation (3.6) of 
Maugin and Eringen (1972~). That is, respectively, 
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with 

In fact, since I?,, and Swp are PU, i t  was shown in part I1 that equations (A.5) and (A.6) 
were equivalent. The right hand sides of these equations are only alternate axial four- 
vector and dual skewsymmetric tensor forms. As to equation (AS), it was established 
with equation (A.4) as starting point. They are in fact two different forms of one equation. 
Indeed, consider the equation 

SDl, = 2yJ["@/f (A.8) 

and carry the first of (A.7) into its left hand side. Performing the proper time differentia- 
tion, we obtain 

Now contract this with the expression ( l/ic)E,,,,,u" and use equation (2.13) and the known 
results (cf part I) 

uaua = -c2, U,u, = 0, J a u a  = 0. 

The resulting equation is 

(A.lO) 

Identifying term by term with equation (A.4), we see that the only possibility is 

np E - yWfr,. (A.11) 

That is, as in the classical three-dimensional theory of micromagnetism (cf Maugin and 
Eringen 1972a), the four-dimensional angular velocity of the magnetization is nothing 
but the effective magnetic induction up to the gyromagnetic ratiot. Similarly, since Qaa 

and gab are the relativistic duals of na and Wtff respectively, we have 

R,, = - y P  a,. (A.12) 

This was the result given earlier by Maugin and Eringen (1972c)t. The three equations 
considered are therefore equivalent. However, while the first one appears as a pure 
kinematical relation, the two other ones are more instructive-they are true dynamical 
equations-for they provide an explicit form of the rotation velocity as well as the 
coupling with the stress-energy-momentum, that is, other fields such as the deformation 
field. Note also that equation (2.3) is a fourth form equivalent to equations (A.4) through 
(A.6). 

t Also up to a sign. In Maugin and Eringen (1972a). y is defined as minus the present y. hence no minus sign 
in the corresponding formula. 
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